Micronutrients in Fruit
,

Cooking Matters and the Benefits of Micronutrients

Micronutrients in FruitThe Benefits of Micronutrients

We know fruit and vegetables contain healthy micronutrients – vitamins and minerals, but did you know that different methods of food preparation can affect the levels of vitamin content and bioavailability (how well they’re absorbed).

It appears some micronutrients are most available and better absorbed:

  • eaten raw
  • if food is cooked
  • when foods are eaten with other foods
  • when their structures are broken down first (such as chopping or crushing)

For example:

  • The compounds in blue-red foods (called anthocyanins) such as plums or eggplant are digested relatively quickly.  Many types of anthocyanins, such as those in berries, are readily available and best eaten raw.
  • Water-soluble vitamins found in vegetables such as dark leafy vegetables and capsicum can be lost when cooked in water.  To preserve vitamins the best method is steaming, blanching, sauteing or roasting.
  • Micronutrients in tomatoes or many carotenoids in yellow, orange or red plants, are often better absorbed when cooked.

Micronutrients, such as those in dark leafy vegetables, become more (or less) available when combined with other foods.  Examples of this are:

  • Fat-soluble vitamins need fat to absorb them. So put olive oil, real butter, avocado or nuts with your salad or vegetables.
  • We need vitamin C to maximise iron absorption, so squeeze lemon juice over your leafy greens
  • Combining vegetables with extra virgin olive oil is the magic combination of the healthy Mediterranean diet
  • Chopping or crushing garlic, then letting it sit for a few minutes before cooking, will release allicin, a powerful disease-fighting chemical.
Effects of antioxidant supplements
, , ,

Are Antioxidant supplements making you weaker?

Effects of antioxidant supplementsThe marketing of antioxidant supplements

We have been marketed to by antioxidant supplements for years, with their health and longevity benefits being touted no end. The theory goes something like this:

1. Free radicals, or reactive oxygen species, create oxidative stress and other cellular damage and accelerate the ageing process.

2. Anti-oxidants neutralise free radicals and therefore protect against damage.

3. Therefore, if we consume anti-oxidant supplements it will enhance our disease protection and longevity.

Does the science reflect this theory?

Whilst there is good evidence for points 1 and 2 above, most of the studies in support of number 2 are performed in vitro, i.e., in a test tube or Petri dishes, and not in free-living humans. As for point 3, it may surprise you to discover that numerous clinical trials and metabolic studies show no benefit, or even harm, from using antioxidant supplements. Here are some examples:

  • A 2004 American Heart Association meta-analysis of 20 clinical trials showed no benefits for the use of Vitamins C, E and beta-carotene in the prevention of heart attacks or strokes, and no reduction in mortality.  Importantly, the authors acknowledged that the scientific evidence from observational studies supports the conclusion that “a diet high in food sources of antioxidants and other cardioprotective nutrients” reduced the risk of cardiovascular disease, they found no support for any benefits from the routine use of antioxidant vitamin supplements.
  • A 2008 Cochrane Institute meta-analysis of 67 randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) found no evidence that antioxidant supplements prevent mortality in healthy people or patients with various diseases. The authors said that “treatment with beta-carotene, vitamin A, and vitamin E may increase mortality” and that “potential roles of vitamin C and selenium on mortality need further study”.
  • A 2001 University of Washington randomized trial showed evidence of positive harm from taking a cocktail of antioxidants in patients on statin-niacin therapy. The supplements reduced levels of HDL and increased levels of coronary blockage.
  • A study at Cedars-Sinai Heart Institute showed that cardiac stem cells that were loaded with high doses of antioxidants developed genetic abnormalities that predispose to the development of cancer.
  • A 2009 study by German and American researchers found that daily supplementation with 1000 mg Vitamin C and 400 IU Vitamin E  during a 4-week exercise program by healthy young men suppressed improvements in insulin sensitivity and suppressed production of other protective genes observed in the non-supplementing control group.

How is it that administering the same antioxidant chemicals that we are commonly told that make fruits, vegetables and herbs “protective”, actually appears to be ineffective or even harmful when taken as dietary supplements?

A clue comes from the last study quoted above – the 2009 paper that was titled “Anti-oxidants prevent health-promoting effects of physical exercise in humans”. Exercise creates free radicals, which cause metabolic stress, and the body responds by up-regulating powerful protective genes – this is a hormetic response (as covered in my last blog post). Researchers such as Edward Calabrese and Mark Mattson call these genes “vita-genes” because they ramp up our own internal defences against free radicals, which are much more powerful than any pill that we can take.

By taking antioxidant supplements, we suppress the increase in our own internal defences that would otherwise occur in response to the exercise stress.

So, getting back to the antioxidant theory at the start of this post – what is missing in this theory is the role of our body’s own innate defences system for handling toxic chemicals like free radicals. While our immune system handles invading organisms and large proteins, another system is needed to deal with chemical toxins. It’s called the xenobiotic metabolism, and it’s broken into 3 ‘waves’ of protective enzymes – Phase I, Phase II, and Phase III, which act synergistically to protect against damage and disease.  

We must understand that the body is an adaptive system and it will adjust to maintain a relatively constant state, known as homeostasis. The science of hormesis states that if you provide it with external “help”, it will reduce the effort in building its own internal defences.  Just as being sedentary results in muscle wastage and a decrease in fitness, it turns out that chronic consumption of exogenous antioxidants reduces the “pressure” on your adaptive stress response to ramp up its own endogenous antioxidant defence system.  In biological terms, taking antioxidants leads to homeostatic downregulation of the antioxidant response element.  This actually makes biological sense:  Why should the organism expend precious energy and resources building a defence system if the defence is provided for “free” through diet or supplements?

So it appears that, by consuming more antioxidants, we become dependent upon them and, perversely, we reduce our innate ability to detoxify.  So, now that we know that our endogenous antioxidant defence system is so potent, what steps can we take to build it up? We get the answers from the science of hormesis, and I will explore how to up-regulate these powerful natural defences to disease in the next few blogs.